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Abstract—Group elevator scheduling has long been recognized
as an important problem for building transportation efficiency,
since unsatisfactory elevator service is one of the major complaints
of building tenants. It now has a new significance driven by home-
land security concerns. The problem, however, is difficult because
of complicated elevator dynamics, uncertain traffic in various pat-
terns, and the combinatorial nature of discrete optimization. With
the advent of technologies, one important trend is to use advance
information collected from devices such as destination entry,
radio frequency identification, and sensor networks to reduce
uncertainties and improve efficiency. How to effectively utilize
such information remains an open and challenging issue. This
paper presents the optimized scheduling of a group of elevators
with destination entry and future traffic information for normal
operations and coordinated emergency evacuation. Key problem
characteristics are abstracted to establish a two-level separable
formulation. A decomposition and coordination approach is then
developed, where subproblems are solved by ordinal optimiza-
tion-based local search, and top ranked nodes are selectively
optimized by using dynamic programming. The approach is then
extended to handle up-peak with little or no future traffic infor-
mation, elevator parking for low intensity traffic, and coordinated
emergency evacuation. Numerical testing results demonstrate
near-optimal solution quality, computational efficiency, the value
of future traffic information, and the potential of using elevators
for emergency evacuation.

Note to Practitioners—This paper studies group elevator sched-
uling with destination entry and future traffic information for
normal operations, as well as for coordinated emergency evacu-
ation. By exploiting the separable problem structure, a two-level
formulation is established capable of modeling advance infor-
mation. An approach is then developed by incorporating several
innovative ideas into a decomposition and coordination frame-
work, aiming to achieve near-optimal performance. The approach
has also been extended for cases with little or no future traffic
information and coordinated emergency evacuation. Numerical
testing results are encouraging and further improvement is needed
to reduce CPU time for online implementation.

Index Terms—Coordinated emergency evacuation, destina-
tion entry, dynamic programming, group elevator scheduling,
Lagrangian relaxation, optimization.
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I. INTRODUCTION

SCHEDULING of a group of elevators in a building has
long been recognized as an important issue to improve

transportation efficiency, since elevator service ranks second
after heating, ventilation and air conditioning (HVAC) as the
main complaints of building tenants [29]. Anything to enhance
elevator performance, e.g., shorter wait times during rush hours,
will improve passenger satisfaction. The problem, however,
is difficult because of complicated elevator dynamics, various
traffic patterns with uncertain arrivals and destinations, and the
combinatorial nature of discrete optimization.

To overcome the difficulties caused by traffic uncertainties,
one important trend is to explore advance information. For ex-
ample, most of conventional elevators have simple up and down
buttons for “hall calls,” and destinations are not known until
passengers placed “car calls” from inside an elevator. Newer
systems have keypads to enter passenger destination floors, and
destinations are known in advance [18], [12]. Beyond such key-
pads, future passenger arrival and destination information might
be collected from entrance security systems or radio frequency
identification (RFID). An RFID tag on a person may allow the
system to sense when the person is approaching an elevator and
which floor is likely to be the destination, e.g., the home floor
or the cafeteria floor (Mitsubishi’s smart RFID-enabled eleva-
tors [27]. Sensor networks might also be able to collect future
passenger arrival information [7]. Clearly, advance information
brings new opportunities for group elevator scheduling. How to
effectively utilize such information, however, remains an open
and challenging issue.

In addition to good performance during normal operations,
group elevator scheduling has a new significance on speedy
egress driven by homeland security concerns. In high-rise build-
ings, stairs alone are inefficient for emergency evacuation be-
cause they become congested, people slow down during the long
distance from top floors to the ground, and the elderly and dis-
abled might not be able to use stairs at all [14]. The potential of
using “safe elevators” for evacuation has been demonstrated for
certain situations such as the detection of chemical or biolog-
ical agents, or fires in one wing of a building [19]. Coordinated
emergency evacuation is a key egress method where occupants
at each floor are assumed to evacuate in a coordinated and or-
derly manner [13].

This paper presents the optimized scheduling of a group of
elevators with destination entry and future traffic information
for normal operations and for coordinated emergency evacua-
tion. Relevant results in the literature are reviewed in Section II.
The problem formulation is presented in Section III. To model
destination entry, the destination floor for each passenger is
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specified together with his/her arrival time and arrival floor. To
model future traffic information, a look-ahead time window
is established, where future information within the window
is assumed available, and ignored, otherwise. Using a rolling
horizon scheme, the time window then moves forward to con-
struct snapshot problems periodically or as needed. For each
snapshot, it is noted that individual elevators are coupled only
through serving a common pool of passengers. To capture this
“separable” structure, a two-level formulation is established.
The high level is for passenger-to-elevator assignment, and
the low level is for single elevator dispatching, with elevator
capacity constraints and elevator dynamics embedded within
individual elevators. Such a formulation is generic and appli-
cable to different traffic patterns, including up-peak (all the
passengers arrive at the lobby), down-peak (all the passengers
go to the lobby), and interfloor (passengers have multiple arrival
floors and destination floors).

A snapshot problem has been shown to be NP-hard [23]. To
overcome the complexity, a decomposition and coordination ap-
proach is developed by exploiting problem separability based on
Lagrangian relaxation. Individual elevator subproblems are first
obtained by relaxing the coupling passenger-to-elevator assign-
ment constraints. Since a subproblem is still NP-hard [26], our
goal is not to optimally solve all or any subproblems. Rather,
from the surrogate optimization concept [33], a subproblem so-
lution “better than” the previous one is “good enough” to set the
multiplier updating direction. Subproblems are, thus, individ-
ually solved by using ordinal optimization-based local search,
where nodes of the search tree are first evaluated and ranked
by using the “three-passage heuristics,” and top ranked nodes
are then selectively optimized by using dynamic programming.
Individual elevators are then coordinated through the iterative
updating of multipliers for near-optimal solutions. The method
is presented in Section IV. This method, although targeted for
newer elevators with destination entry systems, could be ex-
tended for traditional elevators without destination entry.

In Section V, statistical information is gathered online to im-
prove performance for up-peak traffic with little or no future
information. A parking strategy is also developed for low inten-
sity traffic with little or no future information. Both are seam-
lessly integrated into our method. In Section VI, our method
is extended for a simplified model of coordinated emergency
evacuation.

Extensive numerical testing has been performed. The results
presented in Section VII demonstrate near-optimal solution
quality and computational efficiency. Future traffic information
is shown to be valuable to improve performance by comparing
performance obtained with different window lengths. The po-
tential of using elevators for coordinated emergency evacuation
has also been demonstrated.

II. LITERATURE REVIEW

Two classes of methods have been developed for group ele-
vator scheduling without destination entry information: heuris-
tics and optimization methods. Many heuristic rules have been
presented in the literature, such as the highest unanswered floor
first, the longest waiting passenger first, equal load among ele-
vators, static zoning, and collective control (see a good survey

in [30]). For collective control, for example, an elevator sequen-
tially serves the collective hall calls in its moving direction be-
fore reversing, and stops at the nearest call first without coor-
dinating with other elevators. This rule is easy to implement.
However, one drawback is bunching, i.e., several elevators move
close to each other in response to a hall call when only one el-
evator is actually needed. Statistical analysis shows that good
steady-state performance can be achieved for up-peak traffic by
releasing elevators at the lobby at a proper time interval [3]. In
general, heuristic rules are computationally efficient, but cannot
consistently yield good performance for various traffic patterns.

Among optimization methods, a steady-state policy based
on queueing theory was developed to minimize the average
wait time for up-peak without destination entry information,
where the decision variable was the interval between suc-
cessive elevator releases at the lobby [24], [25]. Passenger
arrivals were assumed to follow a Poisson process. To make
the analysis tractable, time delays due to elevator stops, pas-
senger loading and unloading, and door open and close were
aggregated into elevator round-trip times (RTTs), which were
assumed to be independent and exponentially distributed. This
up-peak dispatching policy will be compared with our method
in Section VII. For up-peak and down-peak, a method based
on Lagrangian relaxation was developed to minimize the RTT
of elevators, but not for general passenger-based performance
[6]. To obtain optimal policies for all traffic patterns, a method
based on multi-agent reinforcement learning was developed
in [9]. Each agent is responsible for controlling one elevator
and is trained by using neural networks. This method requires
60 000 offline hours of simulated elevator operation to con-
verge for one specific down-peak scenario. Such a training
effort is clearly a major drawback. A method based on genetic
algorithm was presented in [8]. It represents possible solutions
by chromosomes, and a fitness function is used to evaluate the
performance of solutions in a population. Because of the large
search space, this method may not be computationally efficient.

The inherent computational complexity and real-time re-
quirements led to the development of incremental optimization
methods, i.e., assigning a passenger to an elevator upon each
hall call. For example, the new passenger is assigned to an
elevator to minimize the delays of passengers already inside
or assigned to that elevator in [22]. Incremental methods are
generally not that good since they consider the assignment
of one passenger at a time and are not aimed to optimize the
performance over a set of passengers. To improve performance
for cases with low passenger arrivals, the method has been
enhanced by adding the parking feature, i.e., elevators are
parked at floors where they are likely to be needed [5].

Incremental optimization methods have also developed for
group elevator scheduling with destination entry information
[12]. For example, the “estimated time to destination” (ETD)
method assigns a new passenger to an elevator to minimize
his/her estimated time to destination plus the delays of passen-
gers already inside or assigned to that elevator [28]. No op-
timization method beyond incremental optimization has been
found for elevators with destination entry. To investigate the
performance limit, a branch-and-bound-based offline method in
[17]. To the best of our knowledge, Inamoto is the first one that
exploited the separability of problem structure. Based on our
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Fig. 1. Rolling horizon scheme with a look-ahead window T.

earlier version of this paper [32], a Lagrangian relaxation-based
offline method were developed to obtain a performance limit
[31].

Driven by homeland security concerns for speedy egress,
the potential of using “safe elevators” for evacuation has been
studied and new evacuation methods have been suggested [20],
[19]. In [20], for example, elevators are dispatched between the
lobby and certain designated “rescue floors.” No optimization
papers have been found for elevator operations in emergencies.
In the following, our optimization formulation for the normal
mode is presented first.

III. PROBLEM FORMULATION FOR NORMAL MODE

Consider a building with F floors and a group of elevators
with a destination entry system. To model future traffic infor-
mation, a look-ahead time window parameterized by its length
T is used, where future information within the window is as-
sumed available, and ignored otherwise. Cases with different
levels of future information can thus be modeled by appropri-
ately adjusting the window length, including zero (i.e., no future
information). Using a rolling horizon scheme, the time window
moves forward to construct snapshot problems periodically or
as needed,1 as shown in Fig. 1.

At the current rescheduling point , passengers to be consid-
ered for the snapshot problem include the ones who are already
inside elevators, the ones who are waiting, the ones who will ar-
rive between and . Mathematically, they are grouped
into two sets: ( passengers who have been picked up but
not yet delivered to their destination floors) and ( passen-
gers who have not yet been picked up). Together there are
passengers under consideration, and the traffic
information for passenger is specified by the ar-
rival time , the arrival floor , and the destination floor for
all . Such information is available for the snapshot problem at

under the previous assumption of perfect information within
the time window.

It is noted that the elevators are independent of each other
except that they have to serve a common pool of passengers.
A two-level formulation is thus established. The high level is
for passenger-to-elevator assignment, and the low level is for
single elevator dispatching, with elevator capacity constraints
and elevator dynamics embedded within individual elevators.
This two-level concept follows that of Inamoto et al., [17], al-
though the problems addressed and the approaches developed
here are quite different from those of Inamoto et al., [17].

In the following, the coupling assignment constraints are
first established in Section III-A, individual elevator constraints
in Section III-B, and the objective function and the snapshot
problem are then presented in Section III-C.

1Note that this scheme can be specialized to the incremental scheduling where
a snapshot problem is constructed once a new passenger arrived.

Fig. 2. A model of single elevator dynamics.

Fig. 3. Elevator parameters.

A. Passenger-to-Elevator Assignment Constraints

Assignment constraints state that each passenger must be as-
signed to one and only one elevator, i.e.,

(1)

where is a zero-one indicator variable equal to one if pas-
senger is assigned to elevator and zero, otherwise. For a
snapshot problem, passengers in have already been picked
up, and their are fixed. Assignment decisions are thus re-
stricted to passengers who have not yet been picked up, i.e., in

.

B. Individual Elevator Constraints

For individual elevators, the dynamics is based on Nikovski
and Brand [22], as shown in Fig. 2, for an up-moving elevator.
In the figure, the axis is the floor index and the axis is the
elevator velocity. The “halfway point” between floor 1 and
floor 2 represents the location where the elevator should start
decelerating if it is to stop at floor 2, and other halfway points
are similarly defined. The trajectory for a down-moving elevator
is similarly described. At a rescheduling point, passengers can
be picked up by an elevator in its current “one-way trip” only if
the elevator has not passed the corresponding halfway point.

Elevator travel times between any two floors are derived from
Fig. 2. Other elevator parameters such as door open time, door
close time, and load/unload time per passenger are also assumed
deterministic and given; and their relationship is shown in Fig. 3.
Door open time is the time from the start of door opening until
fully opened, and door close time is the time from the start of
door closing until fully closed. Load time per passenger and un-
load time per passenger represent the time for a passenger to
get in or get out, respectively. In addition to the above, there
is a “door dwell time,” representing the minimum amount of
time that the door should stay open after fully opened. If there
is no passenger unloading or loading after the door dwell time
expires, then the door starts to close without additional delay.
Based on the above elevator dynamics and parameters, a sim-
ulator was developed. For a given dispatching strategy and a
given set of passenger assignments, the simulator generates an
elevator trajectory while taking into account elevator capacity at
passenger loading times.
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Fig. 4. Definitions of time metrics.

For individual elevators, capacity limits are formulated as
linear inequality constraints

(2)

where is a zero-one indicator variable equal to one if pas-
senger is in elevator at time and zero, otherwise, and
is the capacity of elevator in terms of the number of pas-
sengers. Let the pickup time of passenger by elevator be
denoted as and the departure time be denoted as , then

. Pickup times and departure
times can in theory be represented as a function of the dis-
patching strategy for elevator and relevant information of
passengers assigned to the elevator

where and (3)

In view that the number of variables is infinite for a con-
tinuous-time formulation and the mapping could be too com-
plicated to describe, constraints (2) and (3) are not explicitly
represented. Rather, the simulator is used to simulate an ele-
vator’s dynamics (3), and to enforce capacity constraints (2).
In this sense, constraints (2) and (3) are implicitly embedded
within the simulator.

C. The Objective Function and the Snapshot Problem

For passenger , the wait time is defined as ,
the transit time as , and the service time as

. These definitions are depicted in Fig. 4.
For passengers, long wait times and many stops during a ride

are not good. To improve passenger satisfaction, the objective
function is a weighted sum of wait times and transit times of all
passengers, i.e.,

(4)

where and are weights specified by building designers or
management. Note that if , then . For each
snapshot, the optimization problem is to minimize the objective
function (4) subject to (1)–(3). The decisions include for
all and the dispatching strategy for all .

As presented earlier, constraints (1) that couple individual
elevators are linear inequality constraints, constraints (2) and
(3) are embedded within individual elevators, and the objective
function (4) is additive in terms of passengers but not elevators.
To facilitate the decomposition of the problem into individual

Fig. 5. The decomposition and coordination approach.

elevator subproblems, (4) is transformed into an additive form
in terms of elevators by using (1)

(5)

With this transformation, a two-level separable formulation is
thus established.

IV. SOLUTION METHODOLOGY FOR NORMAL MODE

For the snapshot problem, a simplified version without
detailed elevator dynamics has been shown to be NP-hard [23].
To overcome the complexity, the separable structure of our
formulation is exploited. A decomposition and coordination
approach is developed, and the problem is decomposed into
individual elevator subproblems through the relaxation of
assignment constraints in Section IV-A. In view that each sub-
problem is still NP-hard [26], our goal is not to optimally solve
all or any subproblems. Rather, from the surrogate optimization
concept [33], a subproblem solution “better than” the previous
one is “good enough” to set the multiplier updating direction.
Subproblems are thus individually solved by using the ordinal
optimization-based local search in Section IV-B. For the local
search, passenger selections are first quickly evaluated and
ranked by using the three-passage heuristics, and top ranked
selections are then selectively optimized by using dynamic
programming. Individual elevators are coordinated through
the iterative updating of multipliers for near-optimal solutions
in Section IV-C. The schematic of our approach is shown in
Fig. 5, and the detailed procedure is presented below.

A. Decomposition Into Individual Elevator Subproblems

Assignment constraints (1) that couple individual elevators
are relaxed by using nonnegative Lagrange multipliers

(6)
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Fig. 6. Illustration of the local search.

By collecting all the terms related to elevator from (6), the
subproblem is obtained as

with (7)

subject to (2) and (3). Subproblem (7) is to find the optimal
passenger selections and the optimal dispatching of elevator
to serve the selected passengers for a given set of multipliers

.

B. Solving Individual Elevator Subproblems by Ordinal
Optimization-Based Local Search

Since each subproblem is still NP-hard [26], our goal is
not to optimally solve all or any subproblems. Rather, from
the surrogate optimization concept [33], a proper multiplier
updating direction can be obtained if the surrogate optimization
condition, the surrogate initialization condition (to be presented
in Section IV-B1, and the stepsize condition (to be presented
inSection IV-B3) are satisfied. The surrogate optimization
condition states that a subproblem solution should be “better
than” the previous one, i.e.,

(8)

where is the set of multipliers at the nth iteration. In
the following, subproblems are individually solved by using
ordinal optimization-based local search in Section IV-B1 to
satisfy (8). For the local search, the three-passage heuristics
in Section IV-B2 is used to quickly rank nodes in the search
tree, and dynamic programming in Section IV-B3 is used to
selectively optimize top ranked nodes.

1) Ordinal Optimization-Based Local Search: To find a set
of passenger selections that satisfies (8) under a given
set of multipliers , a local tree search method is devel-
oped. In the search tree, each node is an -tuple consisting
of indicating whether passenger is selected for
elevator or not. For purpose of illustration, consider the sub-
problem for elevator with three passengers, as shown in Fig. 6.
The root node, i.e., a three-tuple (1, 0, 1), denotes that the first
and the third passengers are selected but not the second one; and
is the passenger selections obtained from the previous iteration.
This root is “locally” expanded to generate three child nodes by
varying one passenger selection at a time, as shown in layer 1

of the figure. For each node, the passenger selections are
fixed, while the dispatching strategy is yet to be optimized

with (9)

subject to (2) and (3).
This optimization problem (9) is still NP hard [15], and has to

be solved for each node so as to select a node that is better than
the root node of the search tree. To overcome the costly com-
putational requirements, the ordinal optimization concept that
ranking is robust even with rough evaluations is utilized [16].
Our key idea is to use the three-passage heuristics (to be pre-
sented in Section IV-B2) to efficiently dispatch the elevator and
evaluate ( ) for each node. After the search tree is
traversed and nodes are ranked, exact optimization by dynamic
programming (to be presented in Section IV-B3) is then used to
find a high ranking node that is better than the root node [(8)
above]. The ordinal optimization-based local search is summa-
rized as follows. .

Step 0. [Initialize the root node.] For the first iteration, all
subproblems should be optimally solved and this is to satisfy
the surrogate initialization condition (20), [33]. A quick way to
satisfy this condition is to initialize at 0 for all , since in
this case the optimal solutions for all subproblems are simply

. For all other iterations, set passenger selections to their
latest values obtained from the previous iteration. For
both cases, set the layer of search .

Step 1. [Generate child nodes.] Locally perturb the selections
by changing the selection of one passenger at a time over
passengers to generate a set of child nodes, and set .

Step 2. [Rank.] Use the same set of multipliers for all
nodes. Evaluate for each of the child nodes
by using the three-passage heuristics, and identify the node that
leads to the smallest value of . If this node has a smaller value
than that of the best node obtained thus far, rank it higher than
that node, store it in a queue, and then go to Step 1. Otherwise,
go to Step 3.

Step 3. [Verify.] Verify if the highest ranked node obtained
based on the rough evaluation of Step 2 indeed represents a so-
lution better than the root node by using dynamic programming
for exact optimization of (9). If this node is indeed better than
the original node, then it is accepted and the search stops. Oth-
erwise, the second highest ranked node is taken from the queue
and then evaluated by using dynamic programming (DP), etc. If
no better selections are found, the original selections (the root
node) are maintained and the next subproblem is solved.

2) Three-Passage Heuristics: The three-passage heuristics
[11] is used to quickly rank nodes in the search tree, as briefly
summarized below. For an elevator moving up, the passengers
are served in three “passages.” The first passage is from the el-
evator’s current position to the first “reversal floor” (the highest
floor with loading or unloading if the elevator moves up, and
the lowest floor with loading or unloading otherwise) to serve
up-traffic on the first-come-first-serve basis subject to elevator
capacity constraints. For this passage, passengers can be picked
up only if the elevator has not passed the corresponding halfway
point. The second passage is from the first reversal floor to the
second reversal floor to serve down-traffic, also on the first-
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Fig. 7. Illustration of the three-passage heuristics.

come-first-serve basis. The third passage is then from the second
reversal floor to serve up-traffic, and the process repeats. An ex-
ample is shown in Fig. 7, where the elevator moves up from floor
3. The first passage is from floor 3 to floor 6, the second passage
is from floor 6 to floor 1, and the third passage is from floor 1
to floor 3. Using this heuristics as the dispatching strategy ,
our simulator quickly generates the trajectory for the elevator
to obtain pickup times, departure times, and service times for
passengers under consideration . The value

is then evaluated to be used in the search tree.
3) Dynamic Programming (DP) : To verify if a top ranked

node is better than the root node, DP is used to optimize the dis-
patching strategy for elevator through a novel definition of
DP stages, states, decisions, and costs. It is noted that a one-way
trip consists of multiple stop floors (i.e., floors to be served by
the elevator), including a start floor and a reversal floor. Our key
idea is that for the one-way trip, if the set of stop floors is fixed,
then the passengers to be delivered on this trip are limited to
those traveling between the stop floors. With this, a stage is de-
fined as a one-way trip, as opposed to a discrete time interval or
a stop. The mathematical definitions of individual DP compo-
nents are presented below.

DP Stages: A stage is defined to be a one-way trip of the
elevator without changing its direction. For stage , let
time be the start time when the door is fully opened at the start
floor; and let time be the end time when the door is fully
opened at the reversal floor. The end time of stage is, thus, the
start time of stage , and the current rescheduling time is
the start time of stage 0. Note that the number of DP stages is
not a constant, but depends on the selection of passengers of a
node on which DP is applied.

DP States: For elevator , let denote the set of selected
passengers that have not been delivered at . The minimum
information required to describe the system includes the start
time , the elevator position and direction at , and
traffic information (arrival times, arrival floors, and destination
floors) for passengers in . The DP state is thus represented
by

(10)

DP Decisions: Let denote the set of stop floors of the
one-way trip in stage . In view of Fig. 2, a floor is not con-
sidered at the rescheduling point if the elevator has passed the

Fig. 8. Stagewise costs in stage k for different cases.

corresponding halfway point. Once the set is determined,
passengers to be delivered in the one-way trip are then limited
to those traveling between the stop floors. The passengers are
served according to the stop sequence subject to elevator ca-
pacity constraints. Without loss of generality, those with iden-
tical arrival and destination floors are served under the first-
come-first-serve assumption. The decision includes which
floors to stop and which passengers to serve in stage . Mathe-
matically, , where

is a zero-one decision variable equal to one if passenger
is to be delivered to the destination floor in stage and zero,
otherwise.

System Dynamics: Given and , the elevator trajectory
in stage is generated by using the simulator. As a result, the
pickup times and the departure times of passengers
delivered in stage , the start time of stage , and the
elevator position and direction at are obtained. With this,
the DP state evolving from is determined.

DP Stagewise Costs: For DP, the cost function must be
represented in a stagewise additive form. The total wait time
for a passenger is the sum of the wait times that the passenger
spends waiting in individual stages. The total wait time
is thus stagewise additive, as depicted in Fig. 8.

Mathematically, if the passenger is served in stage
, then the wait time is , as illustrated by the

first two cases in Fig. 8; otherwise, it is ,
as illustrated by the last two cases. It can also be seen from the
figure that the transit time is within a single stage, under the
assumption that each passenger is served in a one-way trip. If
the passenger is served in stage , then the transit time is ;
otherwise, it is 0. The objective function (4), i.e., the weighted
sum of wait and transit times, can thus be represented in terms
of the following stage-wise cost:

(11)

As presented above, for each state in stage , state tran-
sitions can be obtained by considering all possible decisions
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. Associated with and , the elevator trajectory in
stage is generated by using the simulator and the cost in stage

can then be computed according to (11). For a given initial
state, multiple final states exist. Therefore, forward DP instead
of backward DP is applied to obtain an optimal trajectory. The
process is standard, and can be found, for example, in [4, p. 490].

C. Update Multipliers Using Surrogate Subgradient

As presented earlier, the subproblems are solved one at a time
by using local search such that satisfies the surrogate
optimization condition (8). The surrogate dual is obtained from
(6)

(12)

The Lagrangian multipliers are updated by using the
surrogate subgradient method

(13)

where component of the surrogate subgradient is

(14)

in [33, eq. (26)]. The stepsize in (13) is required to satisfy
the following surrogate stepsize condition:

(15)

in [33, eq. (27)], where is the optimal dual cost. Since is
unknown in general, it needs to be estimated online to calculate

. To obtain such an estimate, a feasible primal cost is evalu-
ated to serve as an upper bound on as presented below.

To obtain a feasible primal cost, a feasible solution is needed.
The solutions to subproblems, when put together, are generally
infeasible, i.e., the relaxed assignment constraints are violated,
e.g., a passenger is assigned to no elevator or to two elevators.
Based on an infeasible solution, a heuristics has been developed
to construct a feasible solution. Specifically, any passenger who
was not assigned to an elevator is randomly assigned to an ele-
vator; any passenger who was assigned to an elevator is assigned
to the same elevator; and any passenger who was assigned to two
or more elevators is randomly assigned to one of those eleva-
tors. To reduce computational requirements, a feasible solution
is constructed every few iterations as opposed to every itera-
tion to evaluate the corresponding feasible cost. Let be the
minimal feasible cost obtained thus far. Based on and the
surrogate dual cost , the optimal dual cost is then estimated
according to

(16)

With (15), the stepsize is then set as

(17)

where . The convergence of our method is guaranteed
assuming that in (15) is known. In view that is generally
unknown, the parameter is usually kept small especially for
large n to avoid, to some extent, possible violation of (15). Nu-
merical testing in Section VII will demonstrate that this simple
stepsizing heuristics produces good results.

The algorithm terminates when one of the following two stop-
ping criteria is met: is less than a small posi-
tive number , or the maximum number of iterations has been
reached. To quantify the solution quality for a snapshot problem,
a dual cost (a lower bound to the optimal cost) can be obtained
offline by optimally solving all the subproblems using a global
tree search with DP applied to each node. The corresponding
duality gap is then calculated as the relative difference between
a feasible cost and the dual cost.

In addition to performance of snapshot problems, perfor-
mance of the overall problem, which is solved as a sequence
of snapshot problems, is of interest. The feasible cost for the
overall problem can be evaluated based on realized pickup
times and departure times of all passengers obtained across
multiple snapshot problems. A lower bound to the overall
performance can be obtained by solving the entire problem in
one snapshot, where the window length equals the entire time
horizon. Then, the corresponding dual cost serves as a lower
bound.

As mentioned earlier, our method is developed for newer el-
evators with destination entry systems. Nevertheless, it can be
extended to traditional elevators without destination entry. The
idea is to estimate origin–destination pairs of passengers based
on historical traffic data by exploiting the Kalman filter model
of Ashok and Ben-Akiva [2]. With the estimated origin–destina-
tion pairs, snapshot problems for individual hall calls can then
be formed and solved by using our method. The details are be-
yond the scope of this paper and are thus omitted here.

V. CASES WITH LITTLE OR NO FUTURE TRAFFIC INFORMATION

For cases with little or no future traffic information as mod-
eled by having small or zero time windows (still with destina-
tion entry), the optimization of the above snapshot problems is
“myopic,” and the overall performance may not be good. For
example, suppose that there are four elevators available at the
lobby and four passengers with different destination floors ar-
rived at the lobby at about the same time in up-peak traffic. The
“best” decision for this snapshot problem, e.g., to minimize the
total service time, would be to dispatch one elevator for each
passenger. This, however, would result in “bunching” of eleva-
tors, i.e., elevators moving close to each other. Passengers who
arrive a little bit later than the previous four passengers then have
to wait till one of the elevators returns to the lobby, resulting in
a high overall cost. Bunching is less an issue for cases with suf-
ficient future information since in this case optimized snapshot
decisions are not myopic.

Another concern is related to low intensity traffic with little
or no future information. In such a case, elevators are usually
“idle,” i.e., without passenger assignments. It has been shown
that performance can be improved by “parking” idle elevators
at floors where elevators are likely to be needed [5]. In the fol-
lowing, our method developed in Section IV will be extended
to address these two concerns with little or no future traffic
information.
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A. Extension for Up-Peak With Little or No Future Information

To overcome the myopic difficulty of snapshot solutions with
little or no future traffic information, statistical traffic informa-
tion beyond what is available within the limited time window
needs to be explored. One straightforward way is to form a sto-
chastic optimization problem for each node in the search tree
of Fig. 6 by considering random future passenger arrivals. This
problem, however, is difficult to solve by using stochastic DP
because of inherent complexity and the existence of multiple
final states. As an alternative, our formulation and method are
slightly modified based on the insight obtained from Barney’s
model for up-peak.

Barney’s model for up-peak assumes that passengers arrive at
the lobby at a constant rate with destination floors uniformly dis-
tributed [3, p. 151]. Statistical analysis shows that good steady-
state performance can be achieved for such up-peak traffic by
releasing elevators from the lobby at an equal time interval (the
elevator “interdeparture time”), assuming that the capacity of an
elevator is sufficient to accommodate new arrivals within the in-
terdeparture time.

Based on the above, the method of Section IV is strength-
ened for up-peak by adopting the interdeparture time concept.
The resulting method is to add elevator “hold” and “release”
conditions to the formulation of Section III to space elevator
departures from the lobby for up-peak. Specifically, for an even
flow of passengers, elevators are “held” at the lobby for at least

, i.e.,

(18)

where and are successive departure times of elevators
from the lobby, and is the interdeparture time. To derive , first
the average RTT of an elevator is obtained from probabilistic
analysis as

(19)

in [3, eq. (4.11)]. In the above, is the number of passenger
arrivals within the interdeparture time, is the travel time
between two adjacent floors, is the time delay due to each
stop, and is the time delay due to loading and unloading of
each passenger. Then, equals RTT divided by the number of
elevators:

(20)

in [3, eq. (4.7)]. For a given arrival rate, RTT in (19) is a function
of which depends on , while is a function of RTT based on
(20). In view of this nested relationship, an iterative procedure
has been developed to calculate RTT and for a given arrival
rate [21]. Note that the “threshold rate” at which the number of
new arrivals within the interdeparture time equals the elevator
capacity can be obtained as . Condition (18) is active
for up-peak traffic if the window length is less than , repre-
senting cases with little or no future traffic information.

For up-peak with a varying arrival rate, the interdeparture
time needs to be calculated online. As mentioned above, the

interdeparture time can be obtained for a given arrival rate. For
our problem, the arrival rate is calculated as the number of pas-
sengers arrived during the past few (e.g., five) minutes plus
the number of arrivals in the time window, then divided by the
length of the interval considered [21].

To cover burst arrivals, elevators are “released” from the
lobby when a certain percentage of elevator capacity is filled,
i.e.,

(21)

where is a user specified percentage of elevator capacity.
To solve the problem with “hold” and “release” conditions,

the decomposition and coordination approach of Section IV is
used. At a rescheduling point, the sequence of elevators re-
turning to the lobby is known and subproblems are solved in
this sequence. For each elevator subproblem, conditions (18)
and (21) are enforced for the elevator’s first departure from the
lobby. Subsequent departures will be considered in future snap-
shot problems.

For up-peak traffic, an elevator has no opportunity to serve
other passengers once left the lobby until it returns to the lobby.
As a result, elevator capacities are not well utilized and bunching
is a serious issue when the window length is small. For down-
peak traffic, passengers arrive at multiple floors, and an elevator
has opportunities to serve other passengers on its way down.
Therefore, bunching is less an issue for down-peak traffic, and
the same is true for interfloor traffic. Consequently, “hold” and
“release” conditions are used only for up-peak with little or no
future information.

B. Parking Strategy for Low Intensity Traffic

To develop a parking strategy for low intensity traffic, our
idea is to divide the building into a number of nonoverlapping
“zones,” each consisting of a set of contiguous floors. Probabil-
ities that the next passenger would arrive at individual zones are
estimated, and idle elevators are parked at zones where they are
likely to be needed. To avoid excessive move of elevators, floors
in the same zone are not differentiated.

Specifically, suppose that an elevator became idle, making the
number of idle elevators . At the current
rescheduling point, the probability of having new passenger
arrivals at floor before the next rescheduling point is estimated
by assuming that the floors have independent Poisson arrivals.
This is a reasonable assumption and has been validated in [1].
As a result, , where is the arrival rate of
floor at the time of consideration, and is the rescheduling
interval. The probability of having new passenger arrivals at
zone before the next rescheduling point is .
The number of desired elevators parked at zone is then cal-
culated as (a truncated integer). By comparing the
number of desired elevators in each zone with the number of el-
evators already parked there, the zones needing an idle elevator
are identified. The newly idled elevator is then parked at one of
these zones which is nearest to it. Our parking strategy covers
up-peak, down-peak, and interfloor traffic, and is invoked when
an elevator becomes idle. This strategy, in conjunction with the
previous “hold” and “release” conditions for up-peak with little
or no future information, is embedded within our method devel-
oped in Section IV to form a single “standard method.”
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VI. SCHEDULING FOR THE EMERGENCY MODE

As mentioned in Section I, fireproof elevators are potentially
invaluable to support stairs for building egress in emergencies.
In this section, a simplified model of coordinated emergency
evacuation is developed, assuming that occupants comply with
the instructions of evacuation coordinators (e.g., firefighters) to
evacuate to the lobby in an orderly manner. The overall egress
time, i.e., the time required to evacuate all the occupants, de-
pends on the percentages of floor populations assigned to eleva-
tors versus stairs. To balance the traffic between elevators and
stairs, a heuristic procedure has been developed in [21], where
the percentage of floor populations assigned to elevators is a
truncated linear function of the floor number. Within this con-
text, the elevator egress time ), i.e., the time re-
quired to evacuate occupants assigned to elevators, needs to be
minimized. In the following, our focus is to solve this elevator
evacuation problem.

For the elevator evacuation problem, occupants who are on
the way to elevators are considered as future traffic, and their
information can be collected through sensor networks [7]. To
model such information, a look-ahead time window same as that
for the normal mode is used. Suppose that the traffic information
including arrival times and arrival floors is known within the
time window and the destination floor is the lobby, then our
elevator evacuation problem is to minimize (quadratic form
is used for good algorithm convergence)

(22)

subject to passenger-to-elevator assignment constraints (1) and
individual elevator constraints (2) and (3).

This problem is not separable since the objective function
in (22) is not additive in terms of elevators as in (5). There-
fore, the decomposition and coordination approach developed
in Sections IV and V cannot be directly applied. Nevertheless,
a separable formulation can be obtained by introducing a few
extra variables. Specifically, let be the time required for
elevator to evacuate all the passengers assigned to it, i.e.,

. By requiring that be less than or equal
to the egress time for all , linear inequality “egress-time
constraints” are formed for elevators

(23)

With (23), the problem is converted to a separable form, and
our decomposition and coordination approach can be applied. A
Lagrangian function is first obtained by relaxing the assignment
constraints (1) with nonnegative multipliers , and the new
egress time constraints (23) with nonnegative multipliers

(24)

Elevator subproblems are then constructed and solved, and a
new “egress-time subproblem” for is introduced, as pre-
sented below.

By collecting all the terms related to elevator from (24), the
subproblem is obtained as

(25)

subject to (2) and (3). This subproblem is solved by using
the ordinal optimization-based local search as presented in
Section IV, where nodes of the search tree are first quickly
evaluated and ranked by using the three-passage heuristics.
The top ranked nodes are then exactly optimized by using DP,
where is represented by the following stagewise cost:

(26)

The additional egress-time subproblem is obtained by collecting
all the terms related to from (24)

with (27)

In view of its quadratic objection function with a nonpositive
linear coefficient, this subproblem solution is .
The component of the surrogate subgradient used to update

at the nth iteration is

(28)

The multipliers are then updated by following what was de-
scribed in Section IV.

VII. NUMERICAL RESULTS AND INSIGHTS

The above methods have been implemented in C++ and run
on a P4 2 GHz Linux PC with 512 MB memory. Extensive
numerical testing has been conducted. Five examples are pre-
sented below for a building with ten floors. Example 1 exam-
ines the performance of our standard method of Section V for
small data sets in normal operations. It demonstrates near-op-
timal quality of solutions to snapshot problems and to the overall
problem, and the utilization of destination entry information.
Example 2 is based on large data sets with a constant arrival
rate and demonstrates values of future traffic information, or-
dinal optimization, dynamic programming, batch optimization,
statistical traffic information, and the parking strategy. Example
3 studies how performance changes over time for semi-realistic
traffic with varying arrival rates. Example 4 compares results
of our method with those reported in [24] to demonstrate the
value of destination entry and future traffic information. Ex-
ample 5 then examines coordinated emergency evacuation and
demonstrates the potential of using elevators for building egress.
For all the examples, elevators are uniformly distributed among
floors at the beginning. Detailed data and results are available at
http://www.engr.uconn.edu/msl/test_data/elevator.html.

Example 1: The first example considers normal operations
with small data sets over a 120-s time horizon to demonstrate
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TABLE I
ELEVATOR CONFIGURATIONS

TABLE II
RESULTS FOR VARIOUS TRAFFIC PATTERNS

near-optimal quality of solutions to snapshot problems and to
the overall problem, and to demonstrate the utilization of desti-
nation entry information. There are two elevators whose param-
eters are taken from [10], as summarized in Table I. Three traffic
patterns including up-peak, down-peak, and interfloor are exam-
ined, with a constant arrival rate of one passenger per ten sec-
onds. For all the traffics, arrival times are independent and uni-
formly distributed over the entire horizon. For up-peak traffic,
arrival floors are fixed at the first floor, i.e., the lobby; and to
magnify the utilization of destination entry information, desti-
nation floors are independent and uniformly distributed between
the fourth and the ninth floors for this example. For down-peak
traffic, the destination floor is fixed at the lobby, and arrival
floors are independent and uniformly distributed between the
fourth and the ninth floors. For interfloor traffic, arrival floors
are independent and uniformly distributed between the first and
the sixth floors, and destination floors are independent and uni-
formly distributed between the fourth and the ninth floors. The
objective function is the service time (i.e., ).

Snapshot problems are constructed by using a window length
of 10 s with a rescheduling interval of 2.5 s, and then solved by
using our standard method. Results from ten Monte Carlo simu-
lation runs are summarized in Table II. For up-peak, the average
service time is 29.5 s with a standard deviation of 0.41 s, and
the average CPU time per snapshot is 2.3 s. To quantify the so-
lution quality for snapshot problems, duality gaps are obtained
offline by optimally solving all subproblems per Section IV-C.
With an average CPU time of 50.1 s, the average duality gap
is 4.8%, demonstrating that near-optimal solutions to snapshot
problems are obtained. To quantify the solution quality for the
overall problem, a lower bound is obtained offline by solving the
entire problem in a single snapshot per Section IV-C. The av-
erage lower bound is 27.2 s obtained with an average CPU time
of 842.6 s. This lower bound is close to the mean average ser-
vice time of 29.5 s, demonstrating that near-optimal overall per-
formance is achieved. For down-peak and interfloor, the above
remarks for up-peak also hold.

To demonstrate the utilization of destination entry informa-
tion, the scheduling details obtained from one of the Monte

TABLE III
RESULTS FOR A SAMPLE OF UP-PEAK TRAFFIC

Carlo runs for up-peak are summarized in Table III. For each
passenger, the arrival floor, the arrival time, the destination
floor, the elevator serving the passenger, and the pickup time
are shown. It can be seen that passengers 1, 3, and 4 going
to the ninth floor are picked up by elevator 2 at 31.4 s; and
passengers 2, 5, and 6 going to the fourth floor are picked up
by elevator 1 at 49.5 s. This indicates that passengers with the
same destination floor tend to be served by the same elevator, as
opposed to being served according to their arrival times without
considering their destinations.

Example 2: This example considers normal operations with
large data sets over a 1-h time horizon to demonstrate values of
future traffic information, ordinal optimization, dynamic pro-
gramming, batch optimization, statistical information, and the
parking strategy. There are four elevators whose parameters are
taken from Table I. Three traffic patterns including up-peak,
down-peak, and interfloor are examined with a constant arrival
rate of one passenger per three seconds. For all the traffics, ar-
rival times are independent and uniformly distributed over the
entire horizon. For up-peak traffic, destination floors are in-
dependent and uniformly distributed among all the floors ex-
cept the lobby. For down-peak traffic, arrival floors are inde-
pendent and uniformly distributed among all the floors except
the lobby. For interfloor traffic, arrival floors are independent
and uniformly distributed among all the floors, and for a given
arrival floor, destination floors are independent and uniformly
distributed among other floors. To examine the value of future
traffic information, three window lengths of 0, 30, and 60 s are
tested for each traffic pattern, with rescheduling intervals of 7.5,
7.5, and 15 s, respectively. The objective function is the service
time.

Results obtained from ten Monte Carlo simulation runs are
summarized in Table IV, where means and standard deviations
of average service times and average CPU times per snapshot
are shown. For up-peak, average service times for the three
window lengths of 0, 30, and 60 s are, respectively, 47.3, 34.5,
and 28.1 s, with standard deviations of 0.55, 0.45, and 0.54 s.
This demonstrates that performance is improved with an in-
crease in future traffic information, accompanied by a concomi-
tant increase in the CPU time since more passengers are consid-
ered for a snapshot problem with a larger window. For down-
peak and interfloor, the above remarks for up-peak also hold.
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TABLE IV
RESULTS FOR VARIOUS TRAFFIC PATTERNS WITH

DIFFERENT WINDOW LENGTHS

TABLE V
RESULTS FROM DIFFERENT METHODS FOR SUBPROBLEM SOLVING

Furthermore, for each time window, interfloor has the smallest
average service time among the three traffic patterns, followed
by down-peak. This is reasonable since for interfloor traffic, an
elevator can serve passengers on its way up and down, and for
down-peak traffic on its way down, but for up-peak traffic only
at the lobby.

To demonstrate the values of ordinal optimization, dynamic
programming, batch optimization, statistical information, and
the parking strategy, variations of our standard method are
tested. The following results are obtained for up-peak traffic
with a window length of zero and a rescheduling interval of
7.5 s unless stated otherwise, and are compared with those in
Table IV as detailed below.

Ordinal Optimization and Dynamic Programming:
Without ordinal optimization, subproblems are solved by using
DP for each node in the search tree. In this case, the average
service time is 45.9 s with a standard deviation of 0.76 s, as
shown in Table V. Both metrics are close to those obtained
by using our standard method, while the average CPU time
of 146.3 s is significantly higher than 5.7 s obtained before.
This demonstrates that ordinal optimization improves compu-
tational efficiency without a significant loss of solution quality.
As another extreme, subproblems are solved by using the
three-passage heuristics alone without dynamic programming
in the local search. In this case, the average service time is 55.8 s
with a standard deviation of 1.82 s. Both metrics are higher
than those obtained by using our standard method, although the
average CPU time of 0.8 s is less than 5.7 s obtained before.
This indicates that our standard method selectively uses DP to
achieve good performance without a significant requirement on
CPU time.

Incremental Versus Batch Optimization: For our standard
method, batch optimization is employed in the sense that
passenger-to-elevator assignment decisions are optimized at

TABLE VI
RESULTS FROM BATCH OPTIMIZATION AND INCREMENTAL OPTIMIZATION

TABLE VII
RESULTS FOR UP-PEAK WITH DIFFERENT WINDOW LENGTHS

rescheduling points over a set of passengers. For incremental
optimization, however, the assignment decision is optimized
upon the arrival of each passenger assuming that no future
traffic information is available. To compare these two opti-
mization schemes, a window length of zero is used with a
rescheduling interval of 7.5 s, and results are summarized in
Table VI. With incremental optimization, the average service
time is 61.8 s with a standard deviation of 0.83. Both metrics
are higher than those obtained by using batch optimization, al-
though the average CPU time of 2.2 s is less than 5.7 s obtained
before. This indicates that incremental optimization cannot take
the advantage of optimizing over a set of passengers.

Statistical Information: To demonstrate that statistical
traffic information is valuable for up-peak with little or no fu-
ture traffic information, two variations of our standard method
are examined: “hold” and “release” conditions are not applied
for any T, and two conditions are always applied. Four window
lengths of 0, 10, 30, and 60 s are tested for each traffic pattern,
with rescheduling intervals of 7.5, 2.5, 7.5, and 15 s, respec-
tively. Average service times obtained by using our standard
method and the two variations are summarized in Table VII.
For cases with window lengths of 0 and 10 s, not applying the
two conditions yields the worst performance among the three.
For cases with window lengths of 30 and 60 s, however, always
applying the conditions yields the worst performance among
the three. This is consistent with our intuition that statistical
traffic information is valuable for cases with little or no future
information, but not for cases with sufficient future information.

Parking Strategy: To demonstrate the value of our parking
strategy, low intensity interfloor traffic over a 1-h time horizon
is examined, with a constant arrival rate of one passenger per
30 s. Arrival times, arrival floors, and destination floors are gen-
erated in the same way as those for interfloor traffic of Table IV.
Results obtained with and without the parking strategy are sum-
marized in Table VIII. With the parking strategy, the average
service time of 18.4 s is significantly less than 25.7 s obtained
without the strategy, although the average CPU time of 0.5 s
is slightly higher than 0.4 s obtained without the strategy. This
demonstrates that the strategy improves performance for low in-
tensity traffic by parking elevators at floors where they are likely
to be needed. The average standard deviation of 0.38 s is slightly
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TABLE VIII
RESULTS FOR LOW INTENSITY INTERFLOOR TRAFFIC

Fig. 9. Passenger arrival rates for each interval.

higher than 0.26 s obtained without the strategy. This might be
caused by the hedging nature of the parking strategy.

Example 3: This example considers normal operations with
semi-realistic traffic of varying arrival rates. There are four ele-
vators whose parameters are taken from Table I. Three traffic
data sets from [10] are examined, including up-peak, down-
peak, and interfloor. To graphically represent time-varying ar-
rival rates for each traffic pattern, the time horizon is divided into
intervals of 5 min, and passenger arrival rates for each interval
are plotted against time in Fig. 9. The “threshold rate” at which
the number of new arrivals within its interdeparture time equals
the elevator capacity can be obtained per Section V-A and is rep-
resented by the horizontal dotted line. For the up-peak traffic,
arrival rates are relatively low before 20 min, high between 20
and 45 min, and then low after 45 min. For the interval between
35 and 40 min, the arrival rate is higher than the threshold rate.
The down-peak traffic is generated by reversing the arrival and
destination floors of the up-peak traffic. The interfloor traffic
fluctuates within a relatively small range, as compared with the
up-peak traffic. Detailed data for the three traffics are available
at http://www.engr.uconn.edu/msl/test_data/elevator.html. For
each traffic, three window lengths, 0, 30, and 60 s are tested,
with rescheduling intervals of 7.5, 7.5, and 15 s, respectively.
The objective function is the service time.

Average service times obtained by using our standard method
are summarized in Table IX. For each traffic pattern, the av-
erage service time decreases as the window length increases.
This demonstrates that future traffic information is valuable to
improve performance, accompanied by a concomitant increase
in the CPU time. To further analyze the results, average wait
times and average transit times are also presented in Table IX.
For up-peak, the average wait time decreases as the window
length increases, but the average transit time stays almost the
same. The reason for the latter might be that passengers with
the same destination floor tend to be served by the same ele-
vator, and the number of stops for each elevator on its way up
stays almost the same (i.e., floors/4 elevators) regardless

TABLE IX
RESULTS FOR VARIOUS TRAFFIC PATTERNS WITH VARYING ARRIVAL RATES

Fig. 10. Average service times for up-peak with different window lengths.

of the window length. For down-peak and interfloor, the above
remarks for up-peak also hold.

For up-peak traffic, as mentioned earlier, the arrival rate
for the interval between 35 and 40 min exceeds the threshold
rate. To examine how performance changes over time under
this traffic, average service times for each interval are plotted
against time in Fig. 10. For each time window, the average ser-
vice time increases from the beginning, reaches its maximum
between 35 and 40 min, and then decreases. For an interval
before 20 min and after 45 min during which the arrival rate
is relatively low, the three time windows have similar average
service times. For an interval between 20 and 45 min during
which the arrival rate is relatively high, the 60-s window yields
much better performance than the 30-s window, which in turn
yields much better performance than the 0-s window. This
indicates that future traffic information is valuable for heavy
traffic.

For down-peak and interfloor, curves of average service times
are omitted here since they are similar to those in Fig. 10. Fur-
thermore, as can be seen from Table IX, for each time window,
interfloor has the smallest average service time among the three
traffics, followed by down-peak. This is consistent with the re-
sults of Table IV in Example 2.

Example 4: This example compares results obtained by using
our method with those reported in Example B of [24] to demon-
strate the value of destination entry and future traffic informa-
tion in our dynamic optimization. For that paper, as reviewed in
Section II, passenger arrivals were assumed to follow a Poisson
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TABLE X
RESULTS FROM THE UP-PEAK DISPATCHING POLICY AND OUR METHOD

process. To make the analysis tractable, time delays due to el-
evator stops, passenger loading and unloading, and door open
and close were aggregated into elevator round trip times, which
were assumed to be independent and exponentially distributed.
A steady-state policy was then developed based on queueing
theory to minimize the average wait time for up-peak without
destination entry information. For Example B, two elevators
were considered, each with a capacity of ten passengers. The
arrival rate was one passenger per 10 s and the average elevator
RTT was 60 s. The resulting average wait time was 23.6 s, as
shown in Table X.

For comparison purpose, the data used for our testing are set
as follows. Elevator capacity is set to ten passengers. Elevator
speed is set to 1.1 m/s and other elevator parameters of Table I
are set to zero such that the average RTT obtained from (19)
is 60 s. Passenger arrivals are then generated in the same way
as that for Example B, and the objective function is the same
average wait time. To demonstrate the value of destination entry
in our dynamic optimization, a window length of 0 s is tested.
In addition, a window length of 30 s is tested to demonstrate the
value of future traffic information.

Results obtained by using our standard method are summa-
rized in Table X. With the 0-s window, the average wait time is
21.5 s, less than 23.6 s reported in [24]. This might be caused
by different assumptions, our utilization of destination entry in-
formation, and our dynamic optimization as opposed to their
steady-state analysis. With the 30-s window, the average wait
time is 18.4 s with a standard deviation of 0.31 s. Both metrics
are less than those obtained with the 0-s window, although the
average CPU time of 3.3 s is higher than 2.6 s obtained with the
0-s window. This demonstrates that future traffic information is
valuable to improve performance.

Example 5: This example considers coordinated emergency
evacuation to demonstrate the potential of using elevators for
building egress. There are four elevators whose parameters are
taken from Table I. The overall down-peak traffic consists of
600 arrivals uniformly distributed in time and among floors in a
5-min interval. To minimize the overall egress time, this traffic
is balanced between two stairs and the elevators by using a pro-
cedure such that the egress time via stairs is about the same as
that via elevators [21]. The egress time via stairs is obtained
by using probabilistic analysis with a given average passenger
walking speed and stair width [21]. The window length is set to
0, with a rescheduling interval of 7.5 s. The elevator egress time
is then obtained by using our method presented in Section VI,
and it equals the overall egress time under the balanced traffic
assumption.

Egress results obtained from ten Monte Carlo runs by using
stairs alone, and by using elevators and stairs are summarized

TABLE XI
RESULTS FOR EVACUATION WITH ELEVATORS AND WITHOUT ELEVATORS

in Table XI. Without elevators, all the traffic is evacuated by
using two stairs. In this case, the egress time of 872.3 s is con-
siderably larger than 425.1 s for the case with elevators, demon-
strating the significant potential of using elevators for emer-
gency evacuation.

VIII. CONCLUSION

Advance information brings new opportunities to reduce un-
certainty and improve efficiency. How to effectively model and
utilize such information for group elevator scheduling remains
an open and challenging issue. In this paper, key problem char-
acteristics are abstracted to establish a two-level separable for-
mulation. To handle this NP-hard problem, an approach has
been developed by incorporating several innovative ideas into a
decomposition and coordination framework. The approach has
also been extended for cases with little or no future traffic in-
formation and coordinated emergency evacuation. Numerical
testing results demonstrate near-optimal solution quality, com-
putational efficiency, the value of future traffic information, and
the potential of using elevators for emergency egress. Further
improvement is needed to reduce CPU time for online imple-
mentation. Our study in optimized group elevator scheduling
could have major impacts on configuring elevators for buildings.
With optimized operation, a building may require fewer eleva-
tors to meet given performance specifications, and may lead to
less floor space, equipment, and costs.
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